当前位置: 首页 > 科学研究 > 学术活动 > 正文
杨敏波教授、杨文研究员、姬超副教授学术报告-11月26日
发布时间: 2020-11-23 00:00  作者: 本站原创  来源:星际电子在线   浏览次数:

非线性泛函分析团队学术报告

报告一

报告题目: Global multiplicity of solutions for a modified elliptic problem with singular terms

报告人:杨敏波 教授(浙江师范大学)

报告时间;2020年11月26日上午9:00-10:00

报告地点:腾讯会议 416 555 834

摘要:In this talk we introduce a global multiplicity results of solutions for the singular nonlinear problem in a smooth bounded domain. We first prove a comparison principle to prove the existence of a minimal solution by the method of sub and super solutions and then we also obtain the second solution by critical point theory.

报告人简介:浙江师范大学教授,博士生导师,数学与计算机科学学院副经理,浙江省高校中青年学科带头人。主要从事非线性分析及其应用领域的研究,主持或参与多项国家与省级科研项目,完成巴西国家科学技术发展委员会CNPQ项目一项。在CVPDE、JDE、Com. Anal. Geometry、Nonlinearity、 DCDS-A 等杂志发表论文六十余篇。

报告二

报告题目: New estimate on the critical parameters of the SU(3) Toda system and some related results

报告人:杨文 研究员(中国科学院武汉物理与数学研究所)

报告时间;2020年11月26日上午10:00-11:00

报告地点:腾讯会议 416 555 834

摘要:To obtain the a priori estimate of Toda system, the crucial step is to determine all the possible local masses of blow up solutions. In this talk we study this problem and improve the previous results. Our method is based on a recent work by Eremenko-Gabrielov-Tarasov. This work is joint with Prof. C.S. Lin.

报告人简介:杨文,中国科学院武汉物理与数学研究所研究员。博士师从加拿大英属哥伦比亚大学的魏军诚教授,主要研究方向是非线性偏微分方程的爆破现象和凝聚现象,在J. Differential Geometry, Arch.Rat.Mech.Anal, J.Math.Pure.App., Analysis & PDE, Comm.PDEs, Calc.PDE等国际著名期刊上发表论文三十余篇。

报告三

报告题目: Some recent results on the nonlinear logarithmic Schrodinger equations

报告人: 姬超 副教授 (华东理工大学)

报告时间;2020年11月26日上午11:00-12:00

报告地点:腾讯会议 416 555 834

摘要:In this talk, we are concerned with the nonlinear logarithmic Schrodinger equations. When the potential satisfies a global assumption, we give the multiple solutions. For the logarithmic Schrodinger equation with saddle-like potential, we give the existence of positive solutions. When the potential satisfies a local assumption, due to del Pino and Felmer, we consider the existence and concentration of positive solutions. Finally, based on some new estimates from previous research, the multi-bump solutions are obtained for a logarithmic Schrodinger equation with deepening potential well. This is a joint work with Professor Claudianor O. Alves.

报告人简介:姬超,华东理工大学副教授,美国数学学会《Mathematical Reviews》和德国数学文摘《Zentralblatt Math》评论员。2009年博士毕业于兰州大学,先后在瑞典斯德哥尔摩大学和天津大学做了两站博后。他的研究兴趣主要包括对数薛定谔方程,带磁场的非线性薛定谔方程和具变指数增长的非线性椭圆方程等,迄今已在包括 Int. Math. Res. Not., Calc. Var. Partial Differential Equations, J. Lond. Math. Soc., Discrete Contin. Dyn. Syst., Commun. Contemp. Math.和Manuscripta Math.等刊物上发表SCI论文36篇。 现担任Boundary Value Problems 等3个国际刊物编委。