非线性泛函分析团队学术报告
2021.11.04
报告人:钟学秀,华南师范大学
报告时间:2021年11月4日(星期四)上午11:00-12:00
报告地点: 腾讯会议 ID:124 205 336
报告题目:On the positive normalized solution to the Sch\"odinger equation with general nonlinearities
摘要:In the present paper, we study the asymptotic behaviors of nontrivial nonnegative solutions to the following Schr\"odinger equation with very general nonlinearities $$-\Delta u+\lambda u=g(u)\;\hbox{in}\;\R^N,$$ as $\lambda\rightarrow 0^+$ and $\lambda\rightarrow +\infty$.
In the framework of present paper, the well known Rabinowitz global theorem is not applicable since $\lambda=0$ is an essential spectrum and there is also no bifurcation point $\lambda>0$. However, basing on the fixed point index in cones and the continuation method, we can still find out a global branch of the positive solutions. As an application, we present a new approach to study the normalized solutions problem, i.e., solutions satisfying a prescribed mass $\displaystyle\int_{\R^N}u^2=a>0$. We can obtain some exciting results on the normalized solutions under very \textcolor{red}{mild} assumptions on $g$, including existence, nonexistence and multiplicity, etc.
合作者: Louis Jeanjean (Universit\'e de Bourgogne Franche-Comt\'e) and 张建军(重庆交通大学)
关键字: Schr\"odinger equation; positive normalized solution; global branch;essential spetrum.
报告人简介:钟学秀,华南师范大学副研究员,华南数学应用与交叉研究中心青年拔尖引进人才。主要研究领域为椭圆偏微分方程、泛函分析和变分法。2015年博士毕业于清华大学,获清华大学优秀博士学位论文一等奖和优秀博士毕业生。2015-2017年在台湾大学理论科学研究中心跟随林长寿教授做博士后。主持国家基金一项,广东省基金两项,广州市基金一项。已在JDG、Math. Ann.、Ann. Sc. Norm. Super. Pisa Cl. Sci.、CVPDE、JDE等国际重要刊物上发表多篇学术论文。