当前位置: 首页 > 科学研究 > 学术活动 > 正文
赵洪涌教授、原三领教授学术报告-7月12日
发布时间: 2021-07-09 00:00  作者: 本站原创  来源:星际电子在线   浏览次数:

学术报告一

题目:Dynamics of Zika transmission with contaminated aquatic environments

摘要:Since the outbreak in Brazil, Zika has received the worldwide attention. Zika virus is mainly transmitted via the bites of Aedes mosquito. Recently, experimental evidence indicates that Zika virus in contaminated aquatic environments can be transmitted to aquatic mosquitoes through breeding. In this talk, we propose a new Zika model with contaminated aquatic environments. We calculate the basic reproduction number, analyze the stability of disease free equilibria, and give general conditions with the occurrence of backward bifurcation. Analysis results suggest that transmission force from contaminated aquatic environments to aquatic mosquitoes plays an important role in generating complex dynamics.

报告人简介:赵洪涌, 四川大学理学博士,南京大学博士后.现为南京航空航天大学教授,博士生导师,九三学社社员.长期从事生物系统动力学、传染病动力学分析与控制、时滞微分方程动力学等研究.江苏省高校“青蓝工程”优秀青年骨干教师和中青年学术带头人. 2014年至2020年,连续七年入选爱思唯尔中国高被引学者榜单.获省自然科学优秀论文二等奖一项、江苏省高校科技成果二等奖一项、获南京航空航天大学“群星”创新奖一项.2016年入选南京航空航天大学年度人物.

国家科技部重大项目和江苏省高校重大项目会评专家,国家自然科学基金和江苏省自然科学基金通讯评议专家;在研国家自然科学基金一项. 现已发表学术论文一百余篇,被SCI刊物引用二千余次.现为中国生物数学学会常务理事,江苏省生物数学学会副理事长,TCCT随机系统控制委员会委员.

学术报告二

题目: Noise-Induced Transitions in a Nonsmooth Producer–Grazer Model with Stoichiometric Constraints

摘要:Stoichiometric producer–grazer models are nonsmooth due to the Liebig’s Law of Minimum and can generate new dynamics such as bistability for producer–grazer interactions. Environmental noises can be extremely important and change dynamical behaviors of a stoichiometric producer–grazer model. In this paper, we consider a stochastically forced producer–grazer model and study the phenomena of noiseinduced state switching between two stochastic attractors in the bistable zone. Namely, there is a frequent random hopping of phase trajectories between attracting basins of the attractors. In addition, by applying the stochastic sensitivity function technique, we construct the confidence ellipse and confidence band to find the configurational arrangement of equilibria and a limit cycle, respectively.

报告人简介:原三领,教授,博士生导师,上海理工大学应用数学学科负责人,中国数学会生物数学学会常务理事,美国《Mathematical Reviews》评论员。研究方向为:微分方程与动力系统、生物数学。曾先后主持4项国家自然科学基金面上项目、3项上海市教委项目的研究工作。研究内容涉及微分方程与动力系统、种群动力学、流行病动力学、海洋生态学以及生物化学工程等诸多领域,具有多学科交叉的特点。曾多次受邀到国内和国际多所高校进行合作研究和学术交流。已在Journal of Differential Equations、Journal of Mathematical Biology、Journal of Theoretical Biology、Bulletin of Mathematical Biology等国内外重要学术刊物上发表SCI论文90余篇。